2018中国人工智能白皮书

分享到:

人工智能企业地域分布

人工智能产业链

5月10日,创业邦研究中心在2018全球人工智能产品应用博览会上发布了《2018中国人工智能白皮书》。据统计,2017年中国人工智能核心产业规模超过700亿元,随着各地人工智能建设的逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,年复合增长率将达31.7%。随着人工智能技术的不断成熟,人工智能创业的难度逐步降低,越来越多的创业公司加入人工智能的阵营。

2018年被称为人工智能爆发的元年,人工智能技术应用所催生的商业价值逐步凸显。人工智能逐步切入到社会生活的方方面面,带来生产效率及生活品质的大幅提升。人工智能红利时代开启,资本、巨头和创业公司纷纷涌入,将人工智能拉到了信息产业革命的风口。

人工智能概念及发展

自1956年达特茅斯会议提出“人工智能”概念以来,“人工智能”经历了寒冬与高潮交替的起起伏伏60多年的发展历程。2010年以后,深度学习的发展推动语音识别、图像识别和自然语言处理等技术取得了惊人突破,前所未有的人工智能商业化和全球化浪潮席卷而来。

人工智能产业链可以分为基础设施层、应用技术层和行业应用层。基础层,主要有基础数据提供商、半导体芯片供应商、传感器供应商和云服务商。技术层,主要有语音识别、自然语言处理、计算机视觉、深度学习技术提供商。应用层,主要是把人工智能相关技术集成到自己的产品和服务中,然后切入特定场景。目前来看,自动驾驶、医疗、安防、金融、营销等领域是业内人士普遍比较看好方向。

机器视觉技术

机器视觉是指通过用计算机或图像处理器及相关设备来模拟人类视觉,以让机器获得相关的视觉信息并加以理解,它是将图像转换成数字信号进行分析处理的技术。

数据、算力和算法是影响机器视觉行业发展的三要素。人工智能正在像婴儿一样成长,机器不再只是通过特定的编程完成任务,而是通过不断学习来掌握本领,这主要依赖高效的模型算法进行大量数据训练,其背后需要具备高性能计算能力的软硬件作为支撑。

深度学习出现后,机器视觉的主要识别方式发生重大转变,自学习状态成为视觉识别主流,即机器从海量数据里自行归纳特征,然后按照该特征规律使图像识别的精准度也得到极大的提升,从70%+提升到95%。

机器视觉包括软件平台开发和软硬件一体解决方案服务。整体用户更偏向于B端。软件服务提供商作为技术算法的驱动者,其商业模式应以“技术层+场景应用”作为突破口。软硬件一体化服务供应商作为生态构建者,适合以“全产业链生态+场景应用”作为突破口,加速商业化。

技术算法驱动者——“技术层+场景应用”作为突破口。这种商业模式主要是提供以工程师为主的企业级软件服务。有海量数据支撑,构建起功能和信息架构较为复杂的生态系统,推动最末端的消费者体验。此类商业模式成功关键因素:深耕算法和通用技术,建立技术优势,同时以场景应用为入口,积累用户软件。视觉软件服务按处理方式和存储位置的不同可分为在线API、离线SDK、私有云等。

生态构建者——“全产业链生态+场景应用”作为突破口。软硬一体化的商业模式是一种“终端+软件+服务”全产业链体系。成功的因素是大量算力投入,海量优质数据积累,建立算法平台、通用技术平台和应用平台,以场景为入口,积累用户。亮点是打造终端、操作系统、应用和服务一体化的生态系统,各部分相辅相承,锐化企业竞争力,在产业链中拥有更多话语权。

责任编辑:实习编辑 臧航

上一页 1 2下一页

用户登录

用户注册

用 户 名:

3-16字,可由中文,字母,数字及”_”组成

密 码:

字符长度在6到16个字符之间

确认密码:
邮 箱:
验 证 码:
换一张?